organic papers

Received 10 June 2005

Accepted 24 June 2005

Online 6 July 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sema Öztürk Yıldırım,^a Mehmet Akkurt,^a* Fusun Ur,^b Zafer Cesur,^b Nesrin Cesur^b and Frank W. Heinemann^c

^aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Ístanbul University, 34116 Ístanbul, Turkey, and ^cInstitut für Anorganische Chemie, Universität Erlangen-Nürnberg, Egerlandstrasse 1, D-91058 Erlangen, Germany

Correspondence e-mail: akkurt@erciyes.edu.tr

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.002 Å R factor = 0.034 wR factor = 0.076 Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

6-Methyl-*N*-(3-oxo-1-thia-4-azaspiro[4.4]non-4-yl)imidazo[2,1-*b*][1,3]thiazole-5-carboxamide monohydrate

The title compound, $C_{14}H_{16}N_4O_2S_2 \cdot H_2O$, is a member of a new series of imidazo[2,1-*b*]thiazoles. The crystal packing is stabilized by intermolecular hydrogen bonds.

Comment

The discovery of the immunomodulatory properties of levamisole [(-)-2,3,5,6-tetrahydro-6-phenylimidazo[2,1-b]thiazole; Devlin & Hargrave, 1989] has provoked a great deal of research on imidazo[2,1-b]thiazole derivatives. In connection with our previous papers on the synthesis of imidazo[2,1-b]thiazoles and their crystal structures (Akkurt *et al.*, 2005; Öztürk Yıldırım *et al.*, 2005), we report here the crystal structure of the title spiro derivative, 6-methyl-*N*-(3oxo-1-thia-4-azaspiro[4.4]non-4-yl)imidazo[2,1-b][1,3]thiazole-5-carboxamide monohydrate, (I).

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters are given in Table 1. In the

Figure 1

A drawing of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The broken line indicates a hydrogen bond.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2

A packing diagram for (I). Broken lines indicate hydrogen bonds. H atoms not involved in the hydrogen bonding have been omitted.

cyclopentane ring, the C–C single-bond length varies between 1.530 (2) and 1.545 (2) Å and has a mean value of 1.538 (2) Å, which is comparable with the corresponding average value for a cyclopentane ring [1.543 (18) Å; Allen *et al.*, 1987].

The cyclopentane ring adopts an envelope conformation with atom C14 at the flap, with puckering parameters of $q_2 =$ 0.430 (2) and $\varphi_2 = -31.4$ (2)° (Cremer & Pople, 1975). The thiazole and imidazole rings are essentially coplanar, with a dihedral angle of 0.56 (7)°. The mean C–S bond length [1.783 (2) Å] may be compared with the corresponding values in similar molecules [1.7588 (2) Å (Öztürk Yıldırım *et al.*, 2005) and 1.729 (2) Å (Akkurt *et al.*, 2005)].

Intermolecular hydrogen bonds (Table 2) are highly effective in forming polymeric networks in (I) (Fig. 2) and in stabilizing the crystal packing.

Experimental

A mixture of 6-methyl-*N*-(cyclopentylidene)imidazo[2,1-*b*][1,3]thiazole-5-carbohydrazide (1.31 g, 0.005 mol) (Ur *et al.*, 2004) and HSCH₂COOH (13.82 g, 0.15 mol) was refluxed in dry benzene (30 ml) using a Dean–Stark trap for 6 h. Excess benzene was evaporated *in vacuo*. The residue was triturated with saturated NaHCO₃ until CO₂ evolution ceased and then allowed to stand overnight. The solid thus obtained was filtered, washed with H₂O and crystallized from C₂H₅OH–H₂O mixture (1:2) (Ur *et al.*, 2004; m.p. 399–401 K). IR (KBr, ν_{max} , cm⁻¹): 3366, 3125 (NH), 1692, 1665 (C==O); ¹H NMR (DMSO-*d*₆, δ , p.p.m.): 1.57–1.76 (4H, *m*, cyclopent.), 1.83–1.94 (2H, *m*, cyclopent.), 2.05–2.23 (2H, *m*, cyclopent.), 2.55 (3H, *s*, CH₃), 3.68 (2H, *s*, thiazolidinone CH₂), 7.37 (1H, *d*, *J* = 4.4 Hz, C2-H), 7.99 (1H, *d*, *J* = 4.4 Hz, C3-H), 9.83 (1H, *s*, CONH); ¹³C NMR (CDCl₃, δ , p.p.m.): 16.45 (6-CH₃), 22.99 (cyclopent. C3 and C4), 29.38 (thiazolidinone C5), 38.84 (cyclopent. C2 and C5), 77.61 (thiazolidinone C2), 113.17 (imidazothiazole C2), 116.21 (imidazothiazole C5), 121.22 (imidazothiazole C3), 148.31 (imidazothiazole C6), 152.61 (imidazothiazole C7a), 160.82, 169.45 (CONH/C=O). EI-MS (70 eV), m/z (%): 336 (M^+ , 31), 262 (2), 238 (15), 197 (3), 181 (9), 179 (1), 165 (100), 137 (7), 111 (4), 97 (5). Analysis calculated for C₁₄H₁₆N₄O₂S₂·H₂O: C 47.43, H 5.11, N 15.80%; found: C 47.80, H 5.28, N 15.46%.

Crystal data

C₁₄H₁₆N₄O₂S₂·H₂O $M_r = 354.46$ Orthorhombic, *Pbca* a = 12.959 (5) Å b = 10.908 (5) Å c = 23.797 (5) Å V = 3364 (2) Å³ Z = 8 $D_x = 1.400$ Mg m⁻³

Data collection

Bruker Nonius KappaCCD areadetector diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2002) $T_{\rm min} = 0.891, T_{\rm max} = 0.955$

32544 measured reflections

Refinement

Refinement on F^2 $w = 1/[\sigma^2(H R[F^2 > 2\sigma(F^2)]] = 0.035$ $w = 1/[\sigma^2(H + 1.459)]$ $wR(F^2) = 0.076$ where PS = 1.04 $(\Delta/\sigma)_{max} = 4118$ reflections $\Delta\rho_{max} = 0.254$ $\Delta\rho_{min} = -0.254$ H atoms treated by a mixture of $\Delta\rho_{min} = -0.254$

independent and constrained refinement

Mo K α radiation Cell parameters from 338 reflections $\theta = 6.0-20.0^{\circ}$ $\mu = 0.34 \text{ mm}^{-1}$ T = 100 KPrism, colourless $0.35 \times 0.24 \times 0.14 \text{ mm}$

4118 independent reflections 3269 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 28.5^{\circ}$ $h = -17 \rightarrow 17$ $k = -14 \rightarrow 14$ $l = -29 \rightarrow 31$

$w = 1/[\sigma^2(F_o^2) + (0.0323P)^2]$
+ 1.4591P]
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.28 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

\$1-C3	1.7332 (16)	N1-C3	1.321 (2)
S1-C4	1.745 (2)	N2-C5	1.396 (2)
S2-C9	1.8082 (19)	N2-C3	1.3616 (19)
S2-C10	1.8458 (16)	N2-C6	1.3992 (18)
N1-C2	1.3851 (19)	N3-N4	1.3916 (17)
$C_3 - S_1 - C_4$	89.39 (7)	C9 - S2 - C10	93.85 (7)
			, ener (.)

Table 2

Hydrogen-bond	geometry	(Å,	°).
---------------	----------	-----	-----

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$		
$\begin{array}{c} N3 - H3 \cdots O3 \\ O3 - H31 \cdots O2^{i} \\ O3 - H32 \cdots N1^{ii} \end{array}$	0.91 (2) 0.86 (2) 0.79 (2)	1.85 (2) 1.98 (2) 1.98 (2)	2.759 (2) 2.8197 (19) 2.767 (2)	174 (2) 167 (2) 176 (2)		
Symmetry codes: (i) $-x + 1, -y, -z + 1$; (ii) $-x + \frac{1}{2}, +y - \frac{1}{2}, z$.						

All H atoms were located in a difference synthesis and refined isotropically [C-H = 0.912 (18)–1.026 (17) Å and O-H = 0.79 (2)–0.86 (2) Å]. The $U_{\rm iso}$ (H) values were constrained to between 0.96 and 1.36 times $U_{\rm eq}$ of the carrier atom, while the displacement parameters of the water H atoms were refined freely.

Data collection: *COLLECT* (Nonius, 1999); cell refinement: *EVALCCD* (Duisenberg *et al.*, 2003); data reduction: *SADABS* (Sheldrick, 2002); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP3* for Windows (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

References

- Akkurt, M., Öztürk Yıldırım, S., Ur, F., Cesur, Z., Cesur, N. & Büyükgüngör, O. (2005). Acta Cryst. E61, o718–o720.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Devlin, J. P. & Hargrave, K. D. (1989). Tetrahedron, 45, 4327-4369.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Öztürk Yıldırım, S., Akkurt, M., Ur, F., Cesur, Z., Cesur, N. & Büyükgüngör, O. (2005). *Acta Cryst.* E**61**, 0892–0894.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.
- Ur, F., Cesur, N., Ötük, G. & Birteksöz, S. (2004). Arzneim. Forsch. (Drug Res.), 54, 125–129.